Please answer the following four questions, on a separate paper. No books or calculators. A Collection of Formulas will be handed. Kaavakokoelma jaetaan.

- 1. Let $\mathcal{P} = \{p, q, r\}$ be a set of propositions. For each of the following, write a propositional formula over \mathcal{P} in which *all* the propositional symbols appear in the formula, and the formula has the required property.
 - (a) a formula ϕ_1 that is a tautology
 - (b) a formula ϕ_2 that is a contradiction
 - (c) a formula ϕ_3 that is neither a contradiction nor a tautology
- 2. Let R be a binary relation over $\mathbb N$ that is defined recursively as follows:
 - 1. $\forall x \in \mathbb{N} : \langle x, x \rangle \in R$
 - 2. If $\langle x,y\rangle\in R$ and $\exists k,n,m\in\mathbb{N}:x=kn,y=km$, then $\langle x,m\rangle\in R$
 - 3. Nothing else is in R.

Answer the following questions about R:

- (a) Is R a partial order? Prove or show a counterexample.
- (b) Is it true that if $\langle x, y \rangle$ and $\langle z, y \rangle$, then $\langle x + z, y \rangle$? Prove or disprove.
- (c) Is it true that if $\langle x, y \rangle$ and $\langle z, y \rangle$, then $\langle xz, y \rangle$? Prove or disprove.
- 3. Prove the following claims:
 - (a) For arbitrary $a, b \in \mathbb{R}, n^2 + an + b \in \Theta(n^2)$ (Hint¹)
 - (b) There exists a function f(n) such that $f(n) \in \Omega(n)$ and $f(n) \in O(n^2)$, but $f(n) \notin \Theta(n^a)$ for any fixed a. (Hint²)
 - (c) If $\epsilon > 0$, then $n \cdot \log_2 n \in O(n^{1+\epsilon})$ (Hint³)
- 4. Use syllogisms and logical equivalences to prove the following. In b) define the appropriate predicates and formulate the premises in predicate logic first.
 - (a) $\forall x: (P(x) \to (Q(x) \lor R(x))) \land \exists y: (P(y) \land \neg R(y)) \Rightarrow \exists z: Q(z)$
 - (b) All ravens are black. Some crows are black. All black birds are either crows or ravens. Pete is black. Pete is not a raven and Pete is not a crow. Therefore, Pete is not a bird.

 $^{^{1}}a$ and b are still constants, they don't change when n does, so even if c depends on them, it is still a constant as well.

²This was actually mentioned during the lectures

³There is a formula in the collection that you can use.