

MATH.MA.210 Discrete mathematics Exam, 08.05.2023

Answer at least four and at most five questions out of the following six. If you answer 5 questions, your points total will be counted. If you answer 4 questions, the points will be multiplied by 1.25. Indicate on the first page how many you are submitting. All questions have the same value.

Questions

1. We define the following propositions:

p means "It is raining", q means "It is cold", and r means "It is windy".

Also we define the following predicates:

A(x) means person x is wearing a jacket. B(x) means the person x is wearing waterproof boots. C(x) means x goes out.

The universal set is some set of people, that includes at least the person "Jack".

- (a) Write the following sentence as a formula: "If Jack goes out and if it is raining, then Jack wears waterproof boots."
- (b) Write the following statement as a formula "It is raining and it is cold and it is windy". From now on consider this formula as the definition of "The weather is bad".
- (c) Write the formula "If the weather is bad, no one goes outside".
- 2. Prove the following is true for $n \in \mathbb{Z}_+$ by induction:

$$\left(\sum_{i=1}^{n}(2i-1)\right)=n^2$$

3. The relation \sim is defined on $\mathbb Z$ as follows: $x \sim y$ if and only if

$$x \equiv y \bmod 6$$

Prove that \sim is an equivalence relation. Describe the equivalence classes verbally and give examples of an element in each equivalence class.

- 4. Let A and B be sets such that |A| = m and |B| = n, and assume that $m \le n$.
 - (a) How many different functions $f:A\to B$ exist?
 - (b) How many of these functions are injections?
 - (c) If m = n, prove that an injection must be a bijection.
- 5. Let the operation \star be defined for odd integers \mathbb{Z}^{odd} such that

$$x \star y = x + y + 1$$

Prove that \mathbb{Z}^{odd} with the operation \star forms a group, and explain what is the identity element of the group, and how to calculate the inverse for each element.

- 6. (a) What is the remainder when 4^{119} is divided by 5?
 - (b) Which of the following equations have unique solutions, and why/why not? List all solutions (i.e., all equivalence classes, obviously, as there are infinite many solutions when a solution exists)
 - i. $4x \equiv 7 \mod 12$
 - ii. $4x \equiv 7 \mod 11$
 - iii. $2x \equiv 6 \mod 12$

APPENDIX: Some helpful formulas and definitions

Definition 1. If a relation is reflexive, symmetric, and transitive, we call it an *equivalence* relation or simply an *equivalence*.

Definition 2. A group is a pair (G, \bullet) where G is a set \bullet is an operation on G with the following properties

- 1. Associativity: $(a \bullet b) \bullet c = a \bullet (b \bullet c)$ for a, b, and $c \in G$.
- 2. Identity element: There exists an element $e \in G$ such that $e \bullet a = a \bullet e = a$ for every $a \in G$.
- 3. Inverse: for every $a \in G$ there is an element $a^{-1} \in G$ such that $a \bullet a^{-1} = a^{-1} \bullet a = e$.

Definition 3. Let $n \in \mathbb{Z}_+$. If for two numbers $a, b \in \mathbb{Z}$ we have $n \mid (a - b)$, we say that a is congruent with b modulo n and we denote $a \equiv b \pmod{n}$ or $a \equiv_n b$.