TUT	Automation Science and Engineering	10.5.2012
MIT-4016	Sensor physics, exam. 15.5.2012	J. Halttunen

No literature! You have to select five and only five of the six questions! All kinds of calculators allowed!

- 1. Explain shortly a) sensor b) Poisson's ratio c) piezoelectric effect d) thermoelectric effect e) Hall effect.
- 2. The principle of classification of transducers into self-generators, modifiers and modulators. Give an example of each type.
- 3. Discuss the properties of optical fibres which may be used for sensing purposes, and the advantages and disadvantages of such systems.
- 4. Capacitive displacement transducers.
- 5. a) Calculate the thickness of the matching layer for the transducer shown in Figure 1. The layer is made of aluminium (velocity of sound 6,32·10³ m/s) and the transducer is working at a frequency of 2 MHz.
- b) What should be the optimum characteristic impedance R_2 of the matching layer between PZT-ceramics (characteristic impedance $R_1 = 19,7$ MPa·s/m) and mineral oil (density 825 kg/m³, velocity of sound 1,44·10³ m/s)?

Figure 1.

- 6. A vortex flowmeter is used to measure water flow. The piping consists of a long round pipe with inside diameter of 50 mm. The kinematic viscosity of water in measurement conditions is $1 \cdot 10^{-6}$ m²/s.
- a) Calculate the minimum reliably measured average flow velocity in the cross-section, if the minimum pipe Reynolds number is 10000.
- b) What is the vortex shedding frequency, if the average flow velocity in the 50 mm pipe is 3 m/s. Suppose that the Strouhal number of the rectangular bluff body is 0,26 and the width of the bluff body is 0,3 times the inside diameter of the pipe.