SGN-2016 DIGITAL LINEAR FILTERING I

Final Examination: 25.11.2008

NO literature in the examination, short, compact, and pithy answers are preferred.

- 1. Explain shortly (using formulas and/or words) the meanings of the following terms:
 - (a) Difference equation (1pt)
 - (b) Cascade form structure (1pt)
 - (c) Zero-phase frequency response (1pt)
 - (d) Type I linear-phase FIR filters (1pt)
 - (e) Bilinear transform (1pt)
 - (f) Limit cycle (1pt)
- 2. (a) Under certain conditions an FIR filter is defined to have a linear-phase (four cases). What are these conditions in terms of the impulse response of the filter? (2pt)
 - (b) The frequency response $H(e^{j\omega})$ of an FIR filter of order N=3 with a real impulse response has the following values: $H(e^{j\omega})=3$, $H(e^{j\pi/2})=2+3j$, and $H(e^{j\pi})=0$. Determine the transfer function H(z). (2pt)
 - (c) The sampling frequency of a digital system is $f_s = 2000$ Hz. The system is designed to reject (attenuate to zero) signal frequencies $f_0 = 400$ Hz and $f_1 = 900$ Hz. It is obvious that such a system (filter) has at least two zero pairs in its transfer function. Where are those zeros located in the z-plane? (2pt)
- 3. (a) Describe the basic steps in Remez algorithm. (3pt)
 - (b) It is desired to design a lowpass FIR filter by windowing. The maximum allowed passband and stopband ripples are $\delta_p = 0.01$ and $\delta_s = 0.001$. Which fixed widow or windows can be used for designing such a filter? Give an explanation. (2pt)
 - (c) Name 4 adjustable windows used for FIR filter design. (1pt)
- 4. Design a Butterworth digital filter with the aid of the bilinear transformation to satisfy following design criteria: $\omega_p = 0.25\pi$, $\omega_s = 0.65\pi$, $A_p = 3 \text{dB}$, and $A_s = 30 \text{dB}$. (6pt) For estimating the minimum order of a Butterworth filter satisfying the given criteria following expression is valid: $N \ge \frac{\log_{10} \left[(A^2 1)/\varepsilon^2 \right]}{2 \cdot \log_{10} (\Omega_s)}$
- 5. It is desired to implement the transfer function

$$H(z) = \frac{K}{1 + 0.88z^{-1}}$$

using two's complement arithmetic. The data wordlength is 1+6 bits. Determine the largest value for K (implemented before the feedback loop) for which there are no overflows (the worst case scaling). What is the variance of the output noise due to the multiplication roundoff errors? (6pt)